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J. Phys. A :  Gen. Phys., Vol. 5. July 1972. Printed in Great Britain. Q 1972. 

Revised thermodynamic relations for 3c. transitions in mixtures 
I. Examination in terms of properties generally relevant 

P G WRIGHT 
Department of Chemistry, University of Dundee, Dundee D D I  4HN, UK 

MS received 23 July 1971 

Abstract. It is proposed that thermodynamic relations to be used for A transitions in mixtures 
will normally follow the lines of Pippard’s relations for j ,  transitions in pure substances. 
The relations given by Stout, treating C, as finite but discontinuous, will usually be irrelevant. 

1. Introduction 

For J. transitions in mixtures, the effect of change of composition was treated by Stout 
(1948) on the hypothesis that what is involved is a transition of the second order in 
Ehrenfest’s sense. That is, it was assumed that C,, the coefficient of expansion, and the 
isothermal compressibility, were all three finite but discontinuous at the 1. temperature. 
The 1” transition in isotopic mixtures of 3He with 4He has been considered in such terms 
(Stout 1948, De Bruyn Ouboter and Beenakker 1961 and Le Pair et al 1965). 

However, it is nearly always more realistic (Tisza 1951) to adopt the hypothesis that 
C, is either infinite or else merely very large but continuous. When employed for i. 
transitions in pure substances, this hypothesis leads to the valuable relations obtained 
by Pippard (1956 and 1957). 

The purpose of the present communication is, as far as such is possible, to obtain 
relations for A transitions in mixtures on this hypothesis. Such relations would ordinarily 
be more appropriate than the corresponding relations deduced by Stout (1948). 

2. Contours relevant to a thermodynamic treatment of 3, transitions in mixtures 

For /I transitions in pure substances, Pippard’s (1956) relations can be obtained by an 
argument (Rice 1954 and compare Rice 1967, Wright 1969) in which the basic approxi- 
mation is made that the slope of the ,? line is nearly equal to the slope of neighbouring 
contours of constant C, or constant CJT,  constant coefficient of expansion, etc. 

For /I transitions in mixtures, there are two distinct situations to be considered. 
In the first (figures 1 and 2), it happens that either for all compositions of the mixture 

(figure 1) or else for a wide range of compositions (figure 2) C, rises to a maximum that 
is either infinite or very high. Over ranges of composition for which this applies, a 
situation obtains which is analogous to that for pure substances. In a diagram plotted, 
for constant pressure, with coordinates xB (the mole fraction of substance B in a mixture 
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Figure 1. Schematic contours of constant C, for a 
L transition for which the maximum in C, is very 
large at all compositions. The broken line denotes 
the locus of maxima in C,. 

Figure 2. Schematic contours of constant C, for a 
i transition for which the maximum in C, remains 
very large for a substantial range of composition 
(though not for all compositions). 

of A and B) and T, the slope of a I curve approximates to that of neighbouring contours 
of constant C, (or C,/T). That is 

(2) , N values, at neighbouring points, of ~ 

. 
(:x:I p,c, 

This is illustrated in figures 1 and 2. As in the case of a pure substance, contours of 
constant (3 V/dT),,,, , or of constant ( - d T/ ld~)~, ,~,  would likewise serve. 

On the other hand (and this seems to be the more usual case), C, may rise to a 
maximum whose height varies greatly with the composition of the mixture (figures 3 
and 4). It is then to be expected that only over short ranges will contours of constant C,, 
or of constant (dVjdT),, or of constant (- d k ' j d ~ ) ~ ,  approximate in slope to the A curve. 
The most, then, that could ordinarily be obtained would be an inequality requiring that 
the slope of the I curve lie between the values taken, at neighbouring points one to one 
side and the other to the other side, by the slope of a contour of constant C, (etc). 

The slopes of the various contours required are found by straightforward exercises 
in partial differentiation, analogous to those previously employed for a pure substance. 
Subject to appropriate conditions of continuity, the slopes are as stated in table 1. 

The reason for the inclusion of some of the contours in table 1 is indicated sub- 
sequently. 
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Figure 3. Schematic contours of constant C, for a 
A transition for which the maximum in C, varies 
greatly in height as the composition of the mixture 
varies. 

Figure 4. Another conceivable case of a maximum 
varying greatly in height. 

Alternative forms included in table 1 follow from expressions 

in terms of partial molar quantities Ai, e. 
The /1 curves in figures 1 to 4 have been drawn with negative slopes ((aTJax,), < 0) 

since the usual case is that in which addition of a solute depresses the ,I temperature. 
This is the effect observed, for example, for solutions of 3He in liquid 4He (Taconis and 
De Bruyn Ouboter 1964), krypton in solid methane (Eucken and Bartholome 1936), 
parahydrogen in solid ordinary hydrogen (Hill and Ricketson 1954) and copper in 
nickel (Grew 1934). 

3. Relations holding when the 5 curve and the contours are almost parallel 

In the special situations exemplified in figure 1 and the left hand part of figure 2, the 
contours of constant C, are almost parallel to each other and to the A curve. The same 
applies to contours of constant (~V/L?T),,,, and to contours of constant ( -  3 V / / I ~ P ) = , ~ ~ .  

Consequently, by arguments of the kind used by Rice (1954 and 1967), there result 
analogues of Pippard’s relations : 
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(i) In the vicinity of a I transition, for various temperatures at a fixed pressure and 
composition 

* -  
H B - H ,  1: constant- 

(ii) In the vicinity of a 2 transition, for various temperatures at a fixed pressure and 
composition 

VB- VA 1: constant- ( - ::),(%),,xB, 

(iii) In the vicinity of a i transition, for various pressures at a fixed temperature and 
composition 

- -  
V, - V' = constant - 

Since C, becomes very large as a i, transition is approached, relation (i) requires that 
I?, -RA passes either through a maximum (if (i?Ti/i?xB)p is negative) or through a mini- 
mum (if (i?T,]c?x,), is positive), unless ( i ? T , / 2 ~ ~ ) ~  is extremely close to zero. The occurrence 
of such maxima or minima suggests that the l curve might be almost parallel to neigh- 
bouring contours of constant E?B - RA. If this is so, then, using the relations of table 1 : 

(iv) In the vicinity of a E. transition, for various compositions at a fixed temperature 
and pressure 

Similarly, by considering cases where (2 V/a T)p ,xB becomes either large and positive 
or large and negative, it is seen that save in exceptional circumstances there will be 
either a maximum or a minimum in vB - PA. The i. curve might then be almost parallel 
to neighbouring contours of constant vB - PA, whence it would follow that : 

(v) In the vicinity of a iL transition, for various compositions at a fixed temperature 
and pressure 

PB - PA 1: constant - - (i:) Jg) p,xB.  

For dilute solutions of B in A, variants of these last two relations could be obtained 
by noting that, for a dilute solution, a maximum in QB- RA or vB- PA necessarily 
implies a maximum in RB or VB. Contours of constant I?,, or of constant PB, could then 
be considered. 

The set of relations still contains no analogue of the first forms given by Stout (1948). 
Such would be obtained by invoking contours of constant 3, - 5, : 

(vi) In the vicinity of a I transition, for various temperatures at a fixed pressure and 
composition 
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There would also be obtained : 

and pressure 
(vii) In the vicinity of a 3, transition, for various compositions at a fixed temperature 

Where relations (iv), (v) and (vii) are applicable, they may be replaced by equivalent 

The first two give 
relations expressed in terms of activities ai or activity coefficients yi. 

(iv‘) 

YA 

= constant - (G) aT, ,( E) c?v 
P.XB 

Similarly, in (vi), the left hand side may be equated to 

For an ideal dilute solution of a gas B in a liquid or solid A exhibiting a transition, 
an alternative form of (i) can be given in terms of the Henry’s law coefficient for the 
solubility of B 

where pB is the partial pressure of B in the vapour in equilibrium with the condensed 
phase. 

In the vicinity of a I transition for an ideal dilute solution of B in A, for various 
temperatures at a fixed pressure 

d In AB H&+ RT’-- H i  ‘v constant- 
d T  

where HBg is the value of H per mole of gaseous B, and H i  is the value of H per mole 
for pure liquid or solid A. The values of C, may be taken to be those of pure A. 

4. The case of peaks of greatly varying height, when the ‘h. curve’ and the contours are not 
even approximately parallel 

The more usual situation for A transitions in mixtures seems to be that, exemplified in 
particular in figure 3, wherein the peak in C ,  varies drastically as the composition alters, 
and the ‘I-curve’ and the contours are not even approximately parallel. 
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For such cases, the above relations would be replaced by corresponding inequalities. 
For example, for the situation exemplified in figure 3, plots of 5- pAagainst (aV/dT),,,, 
would consist of points constituting two curves probably quite different in slope. One 
would give the slopes of contours to one side of the ‘A curve’, and the other the slopes of 
contours to the other side. 

Such plots, while capable of furnishing only approximate upper and lower bounds 
to the slope of a ‘A curve’, could give at least qualitative information on the effect of 
composition on the height of the peak. If the two ‘branches’ of a contour of constant 
C, seem to be approaching each other on moving to the right, then, as can be seen from 
a simple sketch, the height of a finite peak in C ,  is decreasing towards the right. 

While such an application might sometimes be of use, it must be borne in mind that 
the experimental data available will often already consist of measurements of C, as a 
function of temperature and composition. 

5. Some exact relations for finite peaks 

Especially when considering mixtures of two substances only one of which exhibits a 
peak in C,, maxima in C, may often be associated with no discontinuity either in C, 
or in any of its derivatives. A ‘A curve’ is then the locus of points at which, for given 
pressure and composition, C, passes through a maximum; and so is a locus of points 
at which (dC,/dT),,,, = 0. That is, it is, exactly, a contour of constant (aC,/8T),,,B. 
Thus 

(where this relation is exact). The crossed second derivatives being continuous, it 
follows that 

In principle, though almost certainly not in practice, this might be obtainable as the 
slope of a graph of e,, - cpA against ( - dC,/dT),,,, , plotting the corresponding values 
of these quantities, for a fixed pressure and composition, for various temperatures 
around the top of the peak in C,. 

Similarly, relations (table 2) may be formulated on the basis of treating the ‘i curve’ 
as the locus of maxima in other quantities than C,. For peaks which are not very sharp, 
a ‘A curve’ so defined is not necessarily coincident with the ‘A curve’ defined as the locus 
of maxima in C,. Various aspects of such ‘fuzziness’ have been expressed by Giauque 
et a1 (1965). 

5.1. Initial slope of the 2 curve 

The relation given above, for the slope of the II  curve treated as a contour of constant 
(dC,/iW),,,,, reduces to a simpler form if only the initial slope is considered-as, for 
example, when considering the effect of small quantities of an impurity. 
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e,, and Cp both approximate to C:,, the value of C, for pure A. Further, since each 
quantity takes the value appropriate to the top of the peak, ( X i J d T ) ,  is to be equated 
to zero. Thus the slope 

where is the limiting value of cpB for infinite dilution. 
The initial slope is thus determined exclusively by : 
(a) The variation of 
(b) The curvature at the top of the peak for pure substance A. 
Since the denominator will always be numerically large, it constitutes a factor 

tending to make the initial slope small. There being no obvious analogous factor in 
effects on the height of the peak, it is hardly surprising that small traces of impurity 
usually have a much more drastic effect on the height of the peak than on its position. 

The sign of the numerator (aC:B/aT), corresponds unambiguously to the sign of the 
initial slope, since the denominator is always positive. The usual case is that in which 
addition of a solute depresses the A temperature (initial slope negative). Then at a temper- 
ature equal to the I temperature of the solvent 

a property of the solute, with temperature. 

(Z) < o .  
P 

While this is the usual case, the reverse situation seems to occur for solutions in liquid 
sulphur (Scott 1965 and Larkin et a1 1967). 

5.2. Final disappearance of a broadened peak 

Addition of successively larger quantities of a substance B can result in a peak first 
becoming broader and lower, and finally disappearing. The quantity 

is zero both for a maximum and for a minimum in C,, and disappearance of a maximum 
will occur at a point where a maximum and a minimum coincide, that is, at a point 
where 

also is zero. 
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